Impact of shredding degree on papermaking potential of recycled waste

27 Mar.,2024

 

In industrial conditions, the freeness index of pulp is a commonly used parameter to assess the degree of refining of pulp based on how easily it dewaters. The dewatering of pulp on a paper machine screen is a very useful indicator in industrial practice; therefore, in this study, the effect of the initial fibre length on changes in this indicator was examined. Table 2 shows that the freeness of the refined pulp decreases as the initial fibre length increases, which is attributed to the decreasing amount of fine material in the pulp, in line with the current state of knowledge23,24,25,26,27,28. It is assumed that a freeness index of about 30°SR is optimal for most papermaking properties29,30. However, obtained results do not indicate that a freeness of ~ 30°SR necessarily achieves a maximum tensile strength (Table 2). This confirms that there is no straightforward relationship between freeness and paper properties. Therefore, the freeness of the pulp is not useful to compare the papermaking potential of pulp with different initial parameters.

Table 2 Characteristics of refined cellulose pulps.

Full size table

The impact of initial fibre length on internal fibrillation, one of the basic effects of refining31,32,33,34,35, was also studied. Progress in achieving internal fibrillation of refined fibres is commonly assessed based on an increase in their swelling36,37, usually measured by the WRV38,39,40. The analysis in Table 2 indicates that the WRV increases as the initial fibre length decreases, reaching a maximum value of 214.5%. This increase in fibre swelling is accompanied by an increase in the density of the paper, which in turn increases the resistance of the paper to air permeability (Table 2), consistent with previous studies8,41,42,43.

The initial fibre length did not affect the DP of the produced pulps. The DP was 931 ± 0.89 regardless of the initial dimensions of the samples tested. This confirms previous findings in the literature that mechanical treatment has little effect on the DP of cellulose44,45.

Table 3 and Fig. 1 show the morphological characteristics of the fibres of the examined pulps. The fibre length for the refined pulps is characterised by lower values compared to the unrefined pulps, which confirms that one of the basic effects of refining is fibre shortening46,47,48. It should be noted that the use of mean weighted or mean geometric fibre length eliminates the influence of the fines fraction on the analysis result49,50.

Table 3 Fibre and pulp properties after model pulp recycling process including refining.

Full size table

Figure 1

Average fibre length dependency on the cut surface area of samples (before and after model pulp recycling process including refining).

Full size image

The results presented in the Table 3 show that the examined parameter values of fibres and pulps (mean fibre width, mean fibre coarseness, macro fibrillation index, broken fibre content, and fine content) tend to decrease with decreasing length of the initial fibres, and consequently, the mean weighted fibre length increases. However, an initial sample length greater than 5 mm does not significantly affect the examined fibre properties and fine content. It is therefore likely that a strip width of 5 mm is the limit above which significant changes in the pulp do not occur. The results are similar before and after the refining process (Fig. 1).

Microscopic images of the refined pulps, recorded using a Morfi Compact Black Edition camera, are shown in Fig. 2. The decrease in fibre length after the model pulp recycling process is proportional to the decrease in the dimensions of the pre-cut pulp samples. The most significant fibre shortening is noticed for the 1 × 1 mm sample. There is no significant difference in fibre dimensions for the 10 × 10 mm samples and the reference sample (Fig. 2). Therefore, it is possible to shred paper in a shredder to a specific level of fragmentation without fear of excessive shortening of the fibres, which would make the production of high-quality paper more difficult.

Figure 2

Microscopic images of tested fibrous materials.

Full size image

According to previous findings, fibre length has a significant impact on the paper stretch index51, and excessive fibre shortening and a high fines content cause the paper product to become rigid and reduce its deformability49,52,53. Our results, however, indicate that the stretch of the examined papers is similar, irrespective of the fibre length and fines fraction content (Table 4), in contrast to previously reported results. However, the results listed in Table 4 show that fibre length exerts a significant impact on the dynamic tensile properties of paper54,55,56. Importantly, in the case of fibre properties (Table 3 and Fig. 1), changes in the area of the shredded samples above 25 mm2 did not significantly affect the tensile paper properties (Table 4). Based on this, it can be concluded that samples can be cut at 5 mm or larger without significant shortening of the fibres and no significant changes in pulp and paper properties. Therefore, the paper shredding provides useful wastepaper when performed in devices up to class P-6.

Table 4 Mechanical properties of paper sheets produced from refined pulps.

Full size table

Research has shown that the fines fraction produced from fibres is responsible for slowing pulp-dewatering in the forming section of a paper machine57,58. The results obtained are fully consistent with those of earlier studies, in that the pulps with the highest fines content also have the highest SR freeness values (Table 2).

The air permeability of paper decreases as the SR freeness level increases59,60,61,62, in agreement with previous results. The pulps characterised by lower average fibre length, and therefore, have improved barrier properties to gases even though their tensile properties are reduced (Table 4).

The roughness of paper increased with increasing initial fibre length, in agreement with previous results34,61,63,64. Therefore, the best smoothness results (230 mL/min) were obtained for paper produced from the pulp with the lowest fibre length. From the data provided, it can be concluded that this paper would likely have the best printability.

Microscopic images of the paper sheets, recorded using a Keyence VHX-6000 microscope equipped with a VH-Z100UR lens, are presented in Fig. 3. The fibres in the reference pulp (Fig. 3a) appear undamaged. The paper obtained from samples cut into 5 × 5 mm pieces (Fig. 3b) shows both undamaged fibres and cut fibres. This observation clearly indicates that initial shortening of fibres damages the fibre structure to some extent, with an effect on average fibre length. However, these are local symptoms of shortening to a certain size. The vast majority of the fibres remain intact, as in the virgin pulp. Therefore, it can be concluded that shortening of fibres can be tolerated to a certain extent if the overall change to the fibre mixture is small.

Figure 3

Microscopic images of paper sheets derived from (a) reference and (b, c) selected refined pulps produced from the tested fibrous materials.

Full size image

An image from the sample with an initial size of 1 × 1 mm shows many damaged fibres (Fig. 3c), i.e., disintegration into finer material. Therefore, excessive fragmentation of the fibrous material causes considerable damage to the fibrous fraction, and hence, deteriorates the potential of this fraction, which ultimately results in less desirable paper properties.

Based on the results obtained, the degree to which the shortened pieces of office waste paper can be converted into high-quality paper without any issues that reduce the value of the finished product can be predicted to a certain extent. From an ecological point of view, it is necessary to consider at the very least the issue of pulp freeness, and in turn, the energy needed for dewatering of the pulp. Excessive shortening of the paper samples worsens their dewatering capacity, as confirmed by the obtained results (Table 2). Therefore, the practice seeks to maintain a compromise and reduction of the refining range. Achieving efficiency in energy usage is considered the most cost-effective way to reduce CO2 emissions65. Therefore, by producing waste office paper without undue fragmentation in shredder (if data security issues need not be considered), the properties of recycled paper products can be improved and the energy consumption can be reduced concurrently. Thus, the recycling of shredded paper can be carried out in a more ecological, environmentally friendly, and economic manner.

Want more information on automotive parts shredders, Double-Shaft Biomass Shredder, Disposable Gloves Shredding Machine, Industrial Shredder, Industrial Plastic Shredder? Click the link below to contact us.